内毒素检测&去除试剂盒

内毒素是革兰氏阴性菌细胞壁的一部分,是生物制品一个重要的污染物,可在宿主体内导致气相反应,如内毒素休克、组织损伤甚至死亡。FDA要求所有药物的最终配方必须进行内毒素检测。因此,内毒素检测对于用于人体或动物的生物制品、药品以及医疗设备都是非常有必要的。

金斯瑞ToxinSensor™ 内毒素检测系统使用FDA批准的鲎试剂测试方法来实现快速和高度敏感的细菌内毒素检测。鲎试剂法内毒素检测试剂盒能定量检测范围广泛的内毒素(0.01-1 EU/ml)。凝胶内毒素检测试剂盒是一种快速定性试剂盒,可以快速检测呈阳性或阴性的结果。ToxinEraser™ 内毒素去除试剂盒在内毒素的去除过程中具有较高的结合能力(超过2000000 EU / ml)。

  • 内毒素检测
  • 内毒素去除
  • 常见问题解答
  • 客户引文

ToxinSensor™ 内毒素检测试剂盒

   —快速、精准的内毒素检测试剂盒!

  • 包含实验所需全部试剂
  • 高度线性化和可重复的结果
  • 高灵敏度:0.01 EU/ml

ToxinSensor™ 内毒素检测试剂盒适用于内毒素体外试验,包括用于人体或动物的生物制品、药品以及医疗设备。

产品订购信息

产品编号
名称
规格   
价格
选择
L00350
1 Kit (32 rxns)
¥1600
L00350C
1 Kit (16 rxns)
¥800
L00351
1 Kit
¥1000
L00447-20
1 kit (20 assay) 0.015 EU/ml
¥800
L00447-40
1 kit (40 assay) 0.015 EU/ml
¥1500
L00448-20
1 kit (20 assay) 0.03 EU/ml
¥800
L00448-40
1 kit (40 assay) 0.03 EU/ml
¥1500
L00449-20
1 kit (20 assay) 0.06 EU/ml
¥800
L00449-40
1 kit (40 assay) 0.06 EU/ml
¥1500
L00450-20
1 kit (20 assay) 0.125 EU/ml
¥800
L00450-40
1 kit (40 assay) 0.125 EU/ml
¥1500
L00451-20
1 kit (20 assay) 0.25 EU/ml
¥800
L00451-40
1 kit (40 assay) 0.25 EU/ml
¥1500
进入我的购物车

相关产品

产品编号
名称
规格   
价格
选择
L00402
1 ml
¥500
M01054
125 ml
¥180
M01063
1 PK of 6 tips
¥60
M01072-10
10 Tubes
¥300
M01072-40
40 Tubes
¥900
M01072-5
5 Tubes
¥200
进入我的购物车

ToxinEraser™ 内毒素去除系统

   —高效去除样品中的内毒素!
  • 高结合能力,至少2, 000, 000 EU / ml (柱体积)
  • 高再生能力(>90%)
  • 高稳定性和高去除力:可将样品中内毒素含量降至0.1 EU/ml*

*重复使用ToxinEraser™ 内毒素去除树脂,最终去除效率根据样品不同会有所区别。

金斯瑞ToxinEraser™ 是一种有效的内毒素去除工具,在重复使用之后可以将样品中内毒素水平降低至小于1 EU/ mg。该试剂盒可以用于去除蛋白质、多肽、抗体或DNA样品中的内毒素。

产品订购信息

产品编号
名称
规格   
价格
选择
L00338
1 kit
¥1200
进入我的购物车

相关产品

产品编号
名称
规格   
价格
选择
L00402
1 ml
¥500
M01053
125 ml
¥180
M01063
1 PK of 6 tips
¥60
M01072-10
10 Tubes
¥300
M01072-40
40 Tubes
¥900
M01072-5
5 Tubes
¥200
进入我的购物车

选择指导

  ToxinSensor™ 鲎试剂检测法试剂盒 ToxinSensor™ 凝胶检测法试剂盒 ToxinSensor™ 一次性检测试剂盒
基本介绍 该试剂盒利用显色鲎试验定量检测范围广泛的内毒素 该试剂盒基于胶凝作用原理,是一个方便的内毒素定性检测试剂盒 该试剂盒用于一次性检测内毒素含量,有不同的灵敏度可供选择
应用范围 准确的检测内毒素含量 定性检测内毒素 一次性定性检测内毒素
灵敏度 0.01-1 EU/ml 0.25 EU/ml 0.015 EU/ml- 0.25 EU/ml
可重溶鲎试剂与鲎试剂水 包含 包含 不包含
分光光度计 需要 不需要 不需要

试剂盒组分
即用试剂
不含内毒素的枪头和离心管
即用试剂
不含内毒素的枪头和离心管
即用试剂
样本要求 无色液体 N/A N/A
包装 L00350C 16次
L00350 32次
L00351 40次 L00447 - L00451
20/ 40次
  1. 怎样为医疗器械检测内毒素?

    为医疗器械管腔注入不含内毒素的水15毫升(如输液装置、透析管等),密封两端后在37°C水浴孵育2小时,然后将水转移至无内毒素的小瓶。使用ToxinSensor™ 鲎试剂检测法试剂盒(目录号L00350)检测水体中的内毒素浓度,在水中的总内毒素值便可以确定。

  2. 制备标准品溶液时能否使用塑料容器?

    一般而言,内毒素在塑料表面的附着比玻璃表面更强,标准的实验室压力蒸汽灭菌对内毒素几乎不会有任何影响。如要使用玻璃器皿,建议在180°C过夜灭菌以破坏任何附加的内毒素分子。我们建议您仅使用新的塑料制品,并在准备标准品溶液时确认无内毒素。金斯瑞提供Toxinsensor™无内毒素离心管(目录号M01072)用于样品处理。

  3. 标准品溶液能否重复使用?

    不可以。标准品溶液需要在每次实验时新鲜制备。

  4. 如何确定最终的数据的可靠性?

    首先,建议制备所需实验试剂时在通风橱内进行以避免污染;
    对于鲎试剂检测法试剂盒(目录号L00350),如果样品的OD值在标准范围内,最终的数据可以获得良好的线性(R2≥0.980);
    对于凝胶检测法试剂盒(目录号L00351),可以通过阴性和阳性对照,获得可靠的结果。如果在阴性对照下得到一个阳性的结果,这表明,鲎试剂的水可能已经被污染;或如果在阳性对照下得到阴性的结果,表明鲎试剂已失去活性。

  5. 是否可以使用96孔板读取545nm的吸光值?

    鲎试剂检测法试剂盒(L00350)为高灵敏度定量设计,不适用于96孔板;但是可以在离心管中进行实验,在显色后将溶液转移至96孔板中进行读取。

  6. Read more

  • Bergenfelz C., et al. Wnt5a inhibits human monocyte derived myeloid dendritic cell generation. Scand J Immunol. 2013 Aug;78(2):194-204.
  • Shalaby KH., et al. Inhaled Birch Pollen Extract Induces Airway Hyperresponsiveness via Oxidative Stress but Independently of Pollen-Intrinsic NADPH Oxidase Activity, or the TLR4-TRIF Pathway. J Immunol. 2013 Jul 15;191(2):922-33.
  • Clark KD., et al. Hemolymph melanization in the silkmoth Bombyx mori involves formation of a high molecular mass complex that metabolizes tyrosine. J Biol Chem. 2013 May 17;288(20):14476-87.
  • Müller M., et al. Alterations in the secretory pattern of dermal dendritic cells following melanin uptake. Cell Tissue Res. 2013 Jun;352(3):599-610.
  • Kim EH., et al. Prokaryote-expressed M2e protein improves H9N2 influenza vaccine efficacy and protection against lethal influenza a virus in mice. Virol J. 2013 Apr 3;10:104.
  • O'Meara CP., et al. Immunization with a MOMP-Based Vaccine Protects Mice against a Pulmonary Chlamydia Challenge and Identifies a Disconnection between Infection and Pathology. PLoS One. 2013 Apr 16;8(4):e61962.
  • Kovacs-Nolan J., et al. β-1,4-mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice. J Nutr. 2013 Mar;143(3):384-91.
  • Schepetkin IA., et al. Immunomodulatory and hemagglutinating activities of acidic polysaccharides isolated from Combretum racemosum. Int Immunopharmacol. 2013 Mar;15(3):628-37.
  • Ambalavanan N., et al. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L152-61.
  • Mishra B., et al. A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug -resistant bacteria and Candida. Biochim Biophys Acta. 2013 Feb;1828(2):677-86.
  • A Mountney, et al. Sialidase, Chondroitinase Abc And Combination Therapy After Spinal Cord Contusion Injury. J Neurotrauma. 2013 Feb 1;30(3):181-90.
  • Bastiaan-Net S., et al. Biochemical And Functional Characterization Of Recombinant Fungal Immunomodulatory Proteins (Rfips). Int Immunopharmacol. 2013 Jan;15(1):167-75.
  • Sameera Sayeed, et al. Multifunctional Role Of Human Splunc1 In Pseudomonas Aeruginosa Infection. Infect Immun. 2013 Jan;81(1):285-91.
  • K Kouakou, et al. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol. 2013 Mar 7;146(1):232-42.
  • Kaliannan K., et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA. 2013 Apr 23;110(17):7003-8.
  • Gomez G., et al. Immunogenic and Invasive Properties of Brucella melitensis 16M Outer Membrane Protein Vaccine Candidates Identified via a Reverse Vaccinology Approach. PLOS ONE. 2013;8(3):e59751.
  • Chen H., et al. In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice. PLOS ONE. 2013;8(2):e58208.
  • Moshiri A., et al. Role of Tissue-Engineered Artificial Tendon in Healing of a Large Achilles Tendon Defect Model in Rabbits. J Am Coll Surg. 2013 Jun 29. pii: S1072-7515(13)00312-8.
  • Moshiri A., et al. Effectiveness of hybridized nano- and microstructure biodegradable, biocompatible, collagen-based, three-dimensional bioimplants in repair of a large tendon-defect model in rabbits. J Tissue Eng Regen Med. 2013 May 2. doi: 10.1002/term.1740.
  • Chellan B., et al. LIGHT/TNFSR14 Can Regulate Hepatic Lipase Expression by Hepatocytes Independent of T Cells and Kupffer Cells. PLoS One. 2013;8(1):e54719.
  • Hao J., et al. rFliC prolongs allograft survival in association with the activation of recipient Tregs in a TLR5-dependent manner.Cell Mol Immunol. 2013 Oct 7. doi: 10.1038/cmi.2013.44.
  • Sadraeian M., et al. Prevention and Inhibition of TC-1 Cell Growth in Tumor Bearing Mice by HPV16 E7 Protein in Fusion with Shiga Toxin B-Subunit from Shigella dysenteriae. Cell J. 2013 Jul;15(2):176-81.
  • Tripathi A., et al. Modulation of the CXC Chemokine Receptor 4 Agonist Activity of Ubiquitin through C-Terminal Protein Modification. Biochemistry. 2013 Jun 18;52(24):4184-92.
  • Kovacs-Nolan J., et al. β-1,4-mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice. J Nutr. 2013 Mar;143(3):384-91.
  • Schepetkin IA., et al. Immunomodulatory and hemagglutinating activities of acidic polysaccharides isolated from Combretum racemosum. Int Immunopharmacol. 2013 Mar;15(3):628-37.
  • Ambalavanan N., et al. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L152-61.
  • Mishra B., et al. A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: design, synthesis, activity against multidrug -resistant bacteria and Candida. Biochim Biophys Acta. 2013 Feb;1828(2):677-86.
  • A Mountney, et al. Sialidase, Chondroitinase Abc And Combination Therapy After Spinal Cord Contusion Injury. J Neurotrauma. 2013 Feb 1;30(3):181-90.
  • Bastiaan-Net S., et al. Biochemical And Functional Characterization Of Recombinant Fungal Immunomodulatory Proteins (Rfips). Int Immunopharmacol. 2013 Jan;15(1):167-75.
  • Sameera Sayeed, et al. Multifunctional Role Of Human Splunc1 In Pseudomonas Aeruginosa Infection. Infect Immun. 2013 Jan;81(1):285-91.
  • K Kouakou, et al. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol. 2013 Mar 7;146(1):232-42.
  • Kaliannan K., et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA. 2013 Apr 23;110(17):7003-8.
  • Gomez G., et al. Immunogenic and Invasive Properties of Brucella melitensis 16M Outer Membrane Protein Vaccine Candidates Identified via a Reverse Vaccinology Approach. PLOS ONE. 2013;8(3):e59751.
  • Chen H., et al. In Vivo Study of Spherical Gold Nanoparticles: Inflammatory Effects and Distribution in Mice. PLOS ONE. 2013;8(2):e58208.
  • Moshiri A., et al. Role of Tissue-Engineered Artificial Tendon in Healing of a Large Achilles Tendon Defect Model in Rabbits. J Am Coll Surg. 2013 Jun 29. pii: S1072-7515(13)00312-8.
  • Moshiri A., et al. Effectiveness of hybridized nano- and microstructure biodegradable, biocompatible, collagen-based, three-dimensional bioimplants in repair of a large tendon-defect model in rabbits. J Tissue Eng Regen Med. 2013 May 2. doi: 10.1002/term.1740.
  • Chellan B., et al. LIGHT/TNFSR14 Can Regulate Hepatic Lipase Expression by Hepatocytes Independent of T Cells and Kupffer Cells. PLoS One. 2013;8(1):e54719.
  • Hao J., et al. rFliC prolongs allograft survival in association with the activation of recipient Tregs in a TLR5-dependent manner.Cell Mol Immunol. 2013 Oct 7. doi: 10.1038/cmi.2013.44.
  • Sadraeian M., et al. Prevention and Inhibition of TC-1 Cell Growth in Tumor Bearing Mice by HPV16 E7 Protein in Fusion with Shiga Toxin B-Subunit from Shigella dysenteriae. Cell J. 2013 Jul;15(2):176-81.
  • Tripathi A., et al. Modulation of the CXC Chemokine Receptor 4 Agonist Activity of Ubiquitin through C-Terminal Protein Modification. Biochemistry. 2013 Jun 18;52(24):4184-92.


Order online 订单下载
Order by mail 邮箱: order@genscript.com.cn
Order by phone 电话: 400-025-8686-5810   025-58897288-5810
Order by fax 传真: 025-58897288-5815
客服