至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Subunit Stoichiometry, Evolution, and Functional Implications of an Asymmetric Plant Plastid ClpP/R Protease Complex in Arabidopsis.

Plant Cell.. 2011-06;  23(6):2348 - 2361
Paul Dominic B. Olinares, Jitae Kim, Jerrold I. Davis, and Klaas J. van Wijk. Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.
Products/Services Used Details Operation

摘要

The caseinolytic protease (Clp) protease system has been expanded in plant plastids compared with its prokaryotic progenitors. The plastid Clp core protease consists of five different proteolytic ClpP proteins and four different noncatalytic ClpR proteins, with each present in one or more copies and organized in two heptameric rings. We determined the exact subunit composition and stoichiometry for the intact core and each ring. The chloroplast ClpP/R protease was affinity purified from clpr4 and clpp3 Arabidopsis thaliana null mutants complemented with C-terminal StrepII-tagged versions of CLPR4 and CLPP3, respectively. The subunit stoichiometry was determined by mass spectrometry-based absolute quantification... More

关键词