至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules.

Biotechnol Biofuels.. 2017-12; 
Bombeck PL, Khatri V, Meddeb-Mouelhi F, Montplaisir D, Richel A, Beauregard M.
Products/Services Used Details Operation
Gene Synthesis … CBM 372 3a (Clostridium thermocellum CipA, NZYTech), CBM15 (Cellvibrio japonicas, Z48928), CBM17 (Clostridium cellulovorans, U37056), and CBM27 (Thermotoga maritima, NP_229032) genes were synthetized by GenScript Get A Quote

摘要

BACKGROUND: Lignocellulosic biomass will progressively become the main source of carbon for a number of products as the Earth's oil reservoirs disappear. Technology for conversion of wood fiber into bioproducts (wood biorefining) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an important issue. Recently, we developed a simple, rapid approach for detecting four different types of polymer on the surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the fluorescence signal from carbohydrate-binding modules-based probes designed to recognize specific polymers such as crystalline cellulose, amorphous... More

关键词

Carbohydrate-binding module; Cellulose; Enzymes; FTCM; Fluorescent protein; Hemicellulose; LCB (lignocellulosic biomass)