至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability.

Sci Rep. 2017; 
Wolny Marcin,Batchelor Matthew,Bartlett Gail J,Baker Emily G,Kurzawa Marta,Knight Peter J,Dougan Lorna,Woolfson Derek N,Paci Emanuele,Peckham Mich
Products/Services Used Details Operation
Gene Synthesis DNA sequences encoding model SAH domains were synthesized (GeneAr t; GenScript) and subcloned into the pET28a SUMO vector (received as a kind gift from Dr Thomas Edwards) to introduce an N-terminal His-tag and SUMO fusion protein for increased expression and solubility as described5. Get A Quote

摘要

Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly incre... More

关键词