至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Astroplastic: A start-to-finish process for polyhydroxybutyrate production from solid human waste using genetically engineered bacteria to address the challenges for …

biorxiv. 2018; 
Xingyu Chen, Syeda Ibrahim, Alina Kunitskaya, Kaitlin Schaaf, Zi Fei Wang, Preetha Gopalakrishan, Maliyat Noor, Harry Wilton-Clark, Jacob Grainger, Alexandra Ivanova, Patricia Lim, Michaela Olsakova, Lalit Bharadwaj, Bilal Sher, David Feehan, Rachelle Varga, Mayi Arcellana-Panlilio
Products/Services Used Details Operation
Molecular Biology Reagents Financial Disclosure Mindfuel Science Alberta Foundation Genome Alberta GenScript Polyferm Canada GeekStarter Alberta Integrated DNA Technologies University of Calgary University of Calgary Cumming School of Medicine University of Calgary Bachelor of Sciences University of Calgary Schulich School of Engineering University of Calgary O’Brien Centre for the Bachelor of Health Sciences City of Calgary Alberta Innovates The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Get A Quote

摘要

Space exploration has long been a source of inspiration, challenging scientists and engineers to find innovative solutions to various problems. One of the current focuses in space exploration is to send humans to Mars. However, the challenge of transporting materials to Mars and the need for waste management processes are two major obstacles for these long-duration missions. To address these two challenges a process called Astroplastic was developed that produces polyhydroxybutyrate (PHB) from solid human waste, which can be used to 3D print useful items for astronauts. PHB granules are naturally produced by bacteria such as Ralstonia eutropha and Pseudomonas aeruginosa for carbon and energy storage. The phaJ,... More

关键词