至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

DNA-binding specificity changes in the evolution of forkhead transcription factors.

Proc Natl Acad Sci U S A.. 2013-07;  110(30):12349-54
Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL, Bulyk ML. Department of Organismic and Evolutionary Biology Harvard University, Cambridge, MA 0213
Products/Services Used Details Operation

摘要

The evolution of transcriptional regulatory networks entails the expansion and diversification of transcription factor (TF) families. The forkhead family of TFs, defined by a highly conserved winged helix DNA-binding domain (DBD), has diverged into dozens of subfamilies in animals, fungi, and related protists. We have used a combination of maximum-likelihood phylogenetic inference and independent, comprehensive functional assays of DNA-binding capacity to explore the evolution of DNA-binding specificity within the forkhead family. We present converging evidence that similar alternative sequence preferences have arisen repeatedly and independently in the course of forkhead evolution. The vast majority of DNA-bin... More

关键词

protein-DNA interactions; transcription factor binding site motif