至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

GTDC2 modifies O-mannosylated α-dystroglycan in the endoplasmic reticulum to generate N-acetyl-glucosamine epitopes reactive with CTD110.6 antibody.

Biochem Biophys Res Commun.. 2013-09; 
Ogawa M, Nakamura N, Nakayama Y, Kurosaka A, Manya H, Kanagawa M, Endo T, Furukawa K, Okajima T. Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan; Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan.
Products/Services Used Details Operation

摘要

Hypoglycosylation is a common characteristic of dystroglycanopathy, which is a group of congenital muscular dystrophies. More than ten genes have been implicated in α-dystroglycanopathies that are associated with the defect in the O-mannosylation pathway. One such gene is GTDC2, which was recently reported to encode O-mannose β-1,4-N-acetylglucosaminyltransferase. Here we show that GTDC2 generates CTD110.6 antibody-reactive N-acetylglucosamine (GlcNAc) epitopes on the O-mannosylated α-dystroglycan (α-DG). Using the antibody, we show that mutations of GTDC2 identified in Walker-Warburg syndrome and alanine-substitution of conserved residues between GTDC2 and EGF domain O-GlcNAc transferase... More

关键词

CTD110.6; DG; EGF; EGF domain O-GlcNAc transferase; EOGT; ER; GTDC2; GlcNAc; N-acetylglucosamine; dystroglycan; endoplasmic reticulum; epidermal growth factor; α-Dystroglycan