A droplet microfluidics strategy to rapidly synthesize, process, and screen up to hundreds of thousands of compositionally distinct synthetic hydrogels is presented. By programming the flow rates of multiple microfluidic inlet channels supplying individual hydrogel building blocks, microgel compositions and properties are systematically modulated. The use of fluorescent labels as proxies for the physical and chemical properties of the microgel permits the rapid screening and discovery of specific formulations through fluorescence microscopy or flow cytometry. This concept should accelerate the discovery of new hydrogel formulations for various novel applications.
A droplet microfluidics strategy to rapidly synthesize, process, and screen up to hundreds of thousands of compositionally distinct synthetic hydrogels is presented. By programming the flow rates of multiple microfluidic inlet channels supplying individual hydrogel building blocks, microgel compositions and properties are systematically modulated. The use of fluorescent labels as proxies for the physical and chemical properties of the microgel permits the rapid screening and discovery of specific formulations through fluorescence microscopy or flow cytometry. This concept should accelerate the discovery of new hydrogel formulations for various novel applications.