OBJECTIVE:
Patients with epileptic spasms are at high risk for learning and memory impairment later in life. We examined whether synaptic plasticity is affected in the adult hippocampus, a structure responsible for learning and memory, using an animal model of epileptic spasms of unknown cause.
METHODS:
We produced a rat model of N-methyl-d-aspartate (NMDA)-induced spasms combined with prenatal betamethasone administration. In 6- to 11-week-old rats, we evaluated the long-term potentiation (LTP) and general properties of synaptic transmission in pyramidal neurons in the CA1 area of the hippocampus in brain slices.
RESULTS:
The magnitude of LTP by theta burst stimulation was significantly larger in adult rats wi... More
OBJECTIVE:
Patients with epileptic spasms are at high risk for learning and memory impairment later in life. We examined whether synaptic plasticity is affected in the adult hippocampus, a structure responsible for learning and memory, using an animal model of epileptic spasms of unknown cause.
METHODS:
We produced a rat model of N-methyl-d-aspartate (NMDA)-induced spasms combined with prenatal betamethasone administration. In 6- to 11-week-old rats, we evaluated the long-term potentiation (LTP) and general properties of synaptic transmission in pyramidal neurons in the CA1 area of the hippocampus in brain slices.
RESULTS:
The magnitude of LTP by theta burst stimulation was significantly larger in adult rats with a history of infantile NMDA injections than in control rats and rats that received additional adrenocorticotropic hormone (ACTH) treatment. The frequency of spontaneous excitatory transmission, but not inhibitory transmission, was smaller in adult rats with a history of infantile NMDA injections.
SIGNIFICANCE:
This study is the first to provide a basis for the alteration of synaptic plasticity and transmission in a model of epileptic spasms of unknown cause. Postnatal NMDA treatment causing epileptic spasms-like aberrant episodes in the early stage of life in rats has a latent influence on various forms of synaptic plasticity in the hippocampus. Our results provide a novel insight into cognitive impairment that appears later in life in patients with a history of epileptic spasms.