A new method for chemical protein modification is presented utilizing a dirhodium metallopeptide catalyst. The combination of peptide-based molecular recognition and a dirhodium catalyst with broad side-chain scope enables site-specific protein functionalization. The scope and utility of dirhodium-catalyzed biomolecule modification is expanded to allow reaction at physiological pH and in biologically relevant buffer solutions. Specific protein modification is possible directly in E. coli lysate, demonstrating the remarkable activity and specificity of the designed metallopeptide catalyst. Furthermore, a new biotin-diazo conjugate 1b is presented that allows affinity tagging of target proteins.
A new method for chemical protein modification is presented utilizing a dirhodium metallopeptide catalyst. The combination of peptide-based molecular recognition and a dirhodium catalyst with broad side-chain scope enables site-specific protein functionalization. The scope and utility of dirhodium-catalyzed biomolecule modification is expanded to allow reaction at physiological pH and in biologically relevant buffer solutions. Specific protein modification is possible directly in E. coli lysate, demonstrating the remarkable activity and specificity of the designed metallopeptide catalyst. Furthermore, a new biotin-diazo conjugate 1b is presented that allows affinity tagging of target proteins.