Regulatory T cells (Tregs) have been widely recognized as crucial players in controlling immune responses. Because their major role is to ensure that the immune system is not over reactive, Tregs have been the focus of multiple research studies including those investigating transplantation tolerance, autoimmunity and cancer treatment. On their surface Tregs constitutively express CD25, a high affinity receptor for the cytokine interleukin-2 (IL-2). The reagents constructed in this study were generated by genetically linking porcine IL-2 to the truncated diphtheria toxin (DT390). This reagent functions by first binding to the cell surface via the porcine IL-2/porcine CD25 interaction then the DT390 domain ... More
Regulatory T cells (Tregs) have been widely recognized as crucial players in controlling immune responses. Because their major role is to ensure that the immune system is not over reactive, Tregs have been the focus of multiple research studies including those investigating transplantation tolerance, autoimmunity and cancer treatment. On their surface Tregs constitutively express CD25, a high affinity receptor for the cytokine interleukin-2 (IL-2). The reagents constructed in this study were generated by genetically linking porcine IL-2 to the truncated diphtheria toxin (DT390). This reagent functions by first binding to the cell surface via the porcine IL-2/porcine CD25 interaction then the DT390 domain facilitates internalization followed by inhibition of protein synthesis resulting in cell death. Four versions of the porcine IL-2 fusion toxin were designed in an interest to find the most effective isoform: 1) monovalent glycosylated porcine IL-2 fusion toxin (Gly); 2) monovalent non-N-glycosylated porcine IL-2 fusion toxin (NonGly); 3) bivalent glycosylated porcine IL-2 fusion toxin (Bi-Gly); 4) bivalent non-N-glycosylated porcine IL-2 fusion toxin (Bi-NonGly). Using a porcine CD25(+) B cell lymphoma cell line (LCL13271) in vitro analysis of the fusion toxins' ability to inhibit protein synthesis demonstrated that the Bi-NonGly fusion toxin is the most efficient reagent. These in vitro results are consistent with binding affinity as the Bi-NonGly fusion toxin binds strongest to CD25 on the same LCL13271 cells. The Bi-Gly fusion toxin significantly prolonged the survival (p=0.028) of tumor-bearing NOD/SCID IL-2 receptor γ(-/-) (NSG) mice injected with LCL13271 cells compared with untreated controls. This recombinant protein has great potential to function as a useful tool for in vivo depletion of porcine CD25(+) cells for studying immune regulation.