至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

SPEN integrates transcriptional and epigenetic control of X-inactivation.

Nature. 2020; 
Dossin F, Pinheiro I, Żylicz JJ,, Roensch J, Collombet S, Le Saux A, Chelmicki T, Attia M, Kapoor V, Zhan Y, Dingli F, Loew D, Mercher T, Dekker J,, Heard E,.
Products/Services Used Details Operation
ORF cDNA Clones/MolecularCloud Spen cDNA truncations were generated by splicing out different regions of the Spen open reading frame (Genscript, ORF clone OMu11416C) using overlap extension PCR. Get A Quote

摘要

Xist represents a paradigm for the function of long non-coding RNA in epigenetic regulation, although how it mediates X-chromosome inactivation (XCI) remains largely unexplained. Several proteins that bind to Xist RNA have recently been identified, including the transcriptional repressor SPEN1-3, the loss of which has been associated with deficient XCI at multiple loci2-6. Here we show in mice that SPEN is a key orchestrator of XCI in vivo and we elucidate its mechanism of action. We show that SPEN is essential for initiating gene silencing on the X chromosome in preimplantation mouse embryos and in embryonic stem cells. SPEN is dispensable for maintenance of XCI in neural progenitors, although it significantly... More

关键词