Thioredoxin interacting protein (TxNIP) functions as an effector of glucotoxicity in pancreatic β-cells. Exendin-4 (Ex-4), a long-term effective GLP-1 receptor agonist, reduces TxNIP level in pancreatic β-cells. Mechanisms underlying this reduction, however, remain largely unknown. We show here that Ex-4, 8-bromo-cAMP, the cAMP promoting agent forskolin, as well as activators of protein kinase A (PKA) and exchange protein activated by cAMP (Epac), all attenuated the effect of high glucose (20 mM) on TxNIP level in the pancreatic β-cell line Ins-1. Forskolin and Ex-4 also reduced TxNIP level in cultured primary rat islets. This repressive effect is at least partially mediated via stimulating ... More
Thioredoxin interacting protein (TxNIP) functions as an effector of glucotoxicity in pancreatic β-cells. Exendin-4 (Ex-4), a long-term effective GLP-1 receptor agonist, reduces TxNIP level in pancreatic β-cells. Mechanisms underlying this reduction, however, remain largely unknown. We show here that Ex-4, 8-bromo-cAMP, the cAMP promoting agent forskolin, as well as activators of protein kinase A (PKA) and exchange protein activated by cAMP (Epac), all attenuated the effect of high glucose (20 mM) on TxNIP level in the pancreatic β-cell line Ins-1. Forskolin and Ex-4 also reduced TxNIP level in cultured primary rat islets. This repressive effect is at least partially mediated via stimulating proteasome-dependent TxNIP degradation, since the proteasomal inhibitor MG132, but not the lysosomal inhibitor chloroquine, significantly blocked the repressive effect of forskolin. Furthermore, forskolin enhanced TxNIP ubiquitination. Both PKA inhibition and Epac inhibition partially blocked the repressive effect of forskolin on TxNIP level. In addition, forskolin and Ex-4 protected Ins-1 cells from high glucose-induced apoptotic activity, assessed by measuring caspase 3 activity. Finally, knockdown of TxNIP expression led to reduced caspase 3 expression levels and blunted response to forskolin treatment. We suggest that proteasome-dependent TxNIP degradation is a novel mechanism by which Ex-4-cAMP signaling protects pancreatic β cells.