至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

The chromatin landscape of primary synovial sarcoma organoids is linked to specific epigenetic mechanisms and dependencies

Life Sci Alliance. 2020-12; 
Gaylor Boulay, Luisa Cironi, Sara P Garcia, Shruthi Rengarajan, Yu-Hang Xing, Lukuo Lee, Mary E Awad, Beverly Naigles, Sowmya Iyer, Liliane C Broye, Tugba Keskin, Alexandra Cauderay, Carlo Fusco, Igor Letovanec, Ivan Chebib, Petur Gunnalugur Nielsen, Stéphane Tercier, Stéphane Cherix, Tu Nguyen-Ngoc, Gregory Cote, Edwin Choy, Paolo Provero, Mario L Suvà, Miguel N Rivera, Ivan Stamenkovic, Nicolò Riggi
Products/Services Used Details Operation
Plasmid DNA Preparation  CRISPR/Cas9 genome editing of cells for the knockout of USP7 was obtained by infection with the lentiCRISPR v2 plasmid containing the following specific single guide RNA: AGACACCAGTTGGCGCTCCG, TCTTCAGCACTGCTTGTGCA (Genscript) Get A Quote

摘要

Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene to one of three genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces b... More

关键词