至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer

Nat Commun. 2024-01; 
Hanqing Liao , Carolina Barra , Zhicheng Zhou , Xu Peng , Isaac Woodhouse , Arun Tailor , Robert Parker , Alexia Carré , Persephone Borrow , Michael J Hogan , Wayne Paes , Laurence C Eisenlohr , Roberto Mallone , Morten Nielsen , Nicola Ternette
Products/Services Used Details Operation
Peptide Synthesis … All synthetic peptides were obtained from Genscript as a library service and crude purity. We measured the peptide libraries and HLA-peptides by LC-MS on an Ultimate 3000 … Get A Quote

摘要

Understanding the nature and extent of non-canonical human leukocyte antigen (HLA) presentation in tumour cells is a priority for target antigen discovery for the development of next generation immunotherapies in cancer. We here employ a de novo mass spectrometric sequencing approach with a refined, MHC-centric analysis strategy to detect non-canonical MHC-associated peptides specific to cancer without any prior knowledge of the target sequence from genomic or RNA sequencing data. Our strategy integrates MHC binding rank, Average local confidence scores, and peptide Retention time prediction for improved de novo candidate Selection; culminating in the machine learning model MARS. We benchmark our model on a lar... More

关键词