多肽修饰服务

金斯瑞拥有先进的多肽合成能力,并提供超过300种修饰类型,满足您在不同研究领域中的需求。

  • 氨基端修饰类型
    BSA conjugation on N terminal -NH2 KLH conjugation on N terminal -NH2 OVA conjugation on N terminal -NH2 Acetylation
    Biotin Biotin-Ahx 5-FAM 5-FAM-Ahx
    6-FAM 6-FAM-Ahx 2-Abz 4-Abz
    Cy3 Cy5 Cy5.5 Cy7
    DABCYL Dansyl Dansyl-Ahx FITC-Ahx
    FITC-PEG2 5-TMR 6-TMR Rhodamine B
    MCA 3-Maleimide 6-Maleimide SMCC
    Acryl Alloc Benzoyl CBZ
    Fmoc Br-Ac Cl-Ac Aminooxy
    DOTA NOTA 1-Nap 2-Nap
    Succinylation Glutaric acid Butyric acid,C4 Hexanoic acid,C6
    Octanoic acid,C8 Nonanoic acid,C9 Decanoic acid,C10 Lauric acid,C12
    Myristic acid,C14 Palmitic acid,C16 Stearic acid,C18 Arachidic acid,C20
    L-Lactic acid D-Lactic acid Lipoic acid (contains both L-/D-type) 2-Mercaptoacetic acid
    2-Azidoacetic acid 4-Azidobutyric acid 6-Azidohexanoic acid Propiolic acid
    5-Hexynoicacid Trans-Cinnamic acid Trans-Crotonic acid DBCO
    Methyltetrazine TCO
  • 羧基端修饰类型
    Amidation Alcohol
    AMC Bzl
    Cysteamide EDA-Biotin
    Ester (OEt) Ester (OMe)
    Glu(EDANS) Hydrazine
    MPAA NHEt
    Nhisopen NHMe
    TBzl p-Nitroanilide
    Tyr (3-NO2) BSA conjugation on C terminal -COOH
    KLH conjugation on C terminal -COOH OVA conjugation on C terminal -COOH
  • 特殊氨基酸类型
  • 同位素标记类型
    {Arg(13C6,15N4)}
    {Ile(13C6,15N)}
    {Leu(13C6,15N)}
    {Lys(13C6,15N2)}
    {Phe(13C9,15N)}
    {Pro(13C5,15N)}
    {Val(13C5,15N)}
  • 荧光修饰类型/FRET对
    2-Abz (N-Terminal) FITC-Ahx (N-Terminal)
    4-Abz (N-Terminal) FITC-PEG2 (N-Terminal)
    5-FAM (N-Terminal) MCA (N-Terminal)
    5-FAM-Ahx (N-Terminal) Rhodamine B (N-Terminal)
    6-FAM (N-Terminal) AMC (C-Terminal)
    6-FAM-Ahx (N-Terminal) {ACC}
    (7-Aminocoumarin-4-Acetic acid)
    5-TMR (N-Terminal) MCA/Lys(DNP)
    6-TMR (N-Terminal) 2-Abz/Lys(DNP)
    Cy3 (N-Terminal) 4-Abz/Lys(DNP)
    Cy5 (N-Terminal) 2-Abz/Tyr(3-NO2)
    Cy5.5 (N-Terminal) 4-Abz/Tyr(3-NO2)
    Cy7 (N-Terminal) DABCYL/Glu(EDANS)
    Dansyl (N-Terminal) DABCYL/EDANS
    Dansyl-Ahx (N-Terminal)
  • 多肽偶联类型
    BSA (-COOH of C terminal)
    BSA Conjugation on cysteine
    KLH (-NH2 of N terminal)
    KLH Conjugation on cysteine
    OVA (-COOH of C terminal)
    OVA (-NH2 of N terminal)
    OVA Conjugation on cysteine
  • 其他修饰类型
    MAPS PEGylation Cyclic modifications Disulfide Bridges Other
    MAPS Asymmetric 2 branches (C-Terminal) {PEG1}
    NH2-(PEG)1-CH2COOH
    Head to tail amide cyclic Random Disulfide Bridge Dimer ( Inter-Disulfide bridge)
    MAPS Asymmetric 4 branches (C-Terminal) {PEG1-propionic acid}
    NH2-PEG1-CH2CH2COOH
    Amide cyclic (Side chain) Mono Disulfide bridge
    MAPS Asymmetric 8 branches (C-Terminal) {PEG2}
    NH2-(PEG)2-CH2COOH
    Stapled peptide(S5/S5) Double Disulfide bridge
      {PEG3}
    NH2-(PEG)3-CH2CH2COOH
    Stapled peptide(R8/S5) Triple Disulfide Bridge
    {PEG4}
    NH2-(PEG)4-CH2CH2COOH
    Mono Thioether Bridge
    {PEG5}
    NH2-(PEG)5-CH2CH2COOH
    Thioester (C-terminal)
    {PEG6}
    NH2-(PEG)6-CH2CH2COOH
    Amide cyclic (Head to side chain)
    {PEG8}
    NH2-(PEG)8-CH2CH2COOH
    Amide cyclic (Side chain to tail)
    {PEG11}
    NH2-(PEG)11-CH2COOH
    {PEG12}
    NH2-(PEG)12-CH2CH2COOH

    分支肽修饰

    PEG修饰

    环化修饰

金斯瑞已设计多种新冠病毒多肽, 满足不同科研需求,快速交付!

了解详情

酰胺化和乙酰化

如果合成多肽为蛋白质的内部序列,通过N端乙酰化或C端酰胺化可以去除多肽电荷使其更趋向于蛋白质的自然结构,同时增强了多肽对肽链内切酶的抵抗力。

生物素及FITC标记

针对羧基端生物素标记的多肽,需要在其羧基端添加赖氨酸,然后将生物素连接在赖氨酸的侧链上,这样就消除了赖氨酸的正电荷。

FITC是荧光标记的活性前体。为了有效的标记N端,可在多肽的N端和荧光基团之间插入七碳的6-氨基己酸(Ahx),其隔结构(NH2-CH2-CH2-CH2-CH2-CH2-COOH)。

成环修饰

作为多肽最常见的修饰之一,环化不仅增加了多肽链的构象稳定性,还提升了药物吸收的药代动性质和生物膜透过性。构象稳定所带来的靶向性增强,酶稳定性的提高和相对较大的靶标作用面积,都使得环肽成为药物开发,尤其是胞内靶点和口服多肽药物的理想候选骨架。金斯瑞拥有超过20种环肽骨架的合成技术,以及更复杂的环肽修饰策略。

二硫键修饰

在半胱氨酸残基间形成二硫键可以实现多肽环化,但由于二硫键是随机形成的,因此对于含多个半胱氨酸残基的多肽来说,这是个挑战。金斯瑞可在指定的半胱氨酸间构建二硫键,我们最多可以在一条多肽定位引入三对二硫键。

多种磷酸化

多肽磷酸化可以帮助研究磷酸化对多肽和蛋白结构的影响以及蛋白激酶的作用机理,金斯瑞已经成功地为客户合成了大量的丝氨酸、苏氨酸和酪氨酸等磷酸化多肽。对于序列中含有多个含羟基的氨基酸(S,T,Y),可以通过正交保护或使用被Fmoc保护的磷酸化氨基酸原料来实现序列中磷酸化氨基酸的选择性。

甲基化修饰

蛋白质的甲基化被认为是一种重要的修饰,有助于调节细胞功能,如转录、细胞分裂和细胞分化。翻译后氮 -甲基化通常发生在赖氨酸或精氨酸侧链上。甲基化修饰蛋白的多肽可用于蛋白质-蛋白质相互作用研究、或X射线晶体学结构测定。金斯瑞可以合成含有单个、二个、三个甲基化赖氨酸的多肽,其纯度可达>98%,并且也可以和其他甲基化修饰组合。

KLH, BSA,OVA

多肽抗原由于分子太小而不能产生显著的免疫反应,因此需要将多肽抗原偶联到BSA、OVA、KLH等较大的蛋白载体上。KLH由于在ELISA或Western blotting检测中没有抑制作用,所以不影响检测结果。常用的偶联原理是马来酰亚胺法, 即将多肽中的半胱氨酸残基与载体蛋白偶联。因此合成抗原多肽时,在其N端或C端添加一个半胱氨酸残基有利于多肽与载体蛋白的偶联。

聚乙二醇(PEG)修饰

PEG聚合体具有非离子性的、无毒性的、无生物排斥、高亲水性的等,PEG修饰通过化学方法将PEG聚合物偶联到大分子上(抗体、多肽等)。PEG修饰的大分子具有较高的溶解性(主要可用于疏水性药物)及生物药效,可通过伪装多肽,骗过宿主细胞的免疫系统,来增强多肽的治疗效果。它也可以通过降低肾脏清除率来延长多肽的代谢时间。

同位素标记

为了进行核磁共振实验,我们将多肽标记稳定的非放射性的同位素。标记2H、15N、13C或 15N 及 13C同时标记的多肽,合成后可以便于核磁共振检测。如果您需要标记修饰,请提供您的序列及标记需求。

复合抗原肽修饰

多抗原肽(Multiple-Antigen peptide, MAP)是生产高效价的抗多肽抗体和多肽疫苗的一种有效方法。多重抗原肽以赖氨酸的a-或e-基团形成主链,以多拷贝的肽抗原作外表层的分枝状合成多肽。根据赖氨酸的数目,可以合成不同数目侧链的多抗原肽,这样不必将抗原偶联到载体蛋白质便能产生高滴度、高亲和力的抗体。

询价与订购

订购信息

喜欢新升级的网站吗?

讨厌

不喜欢

一般

喜欢

非常喜欢

*