Galactooligosaccharides (GOS) are novel prebiotic food ingredients that can be produced from lactose using β-galactosidase, but the process is more efficient at higher temperatures. To efficiently express the lacS gene from the hyperthermophile Sulfolobus solfataricus, in Lactococcus lactis a synthetic gene (lacSt) with optimized codon usage for Lc. lactis was designed and synthesized. This hyperthermostable β-galactosidase enzyme was successfully overexpressed in Lc. lactis LM0230 using a nisin-controlled gene expression system. Enzyme-containing cells were then killed and permeabilized using 50% ethanol and were used to determine both hydrolysis and transgalactosylation activity. The optimum conditions ... More
Galactooligosaccharides (GOS) are novel prebiotic food ingredients that can be produced from lactose using β-galactosidase, but the process is more efficient at higher temperatures. To efficiently express the lacS gene from the hyperthermophile Sulfolobus solfataricus, in Lactococcus lactis a synthetic gene (lacSt) with optimized codon usage for Lc. lactis was designed and synthesized. This hyperthermostable β-galactosidase enzyme was successfully overexpressed in Lc. lactis LM0230 using a nisin-controlled gene expression system. Enzyme-containing cells were then killed and permeabilized using 50% ethanol and were used to determine both hydrolysis and transgalactosylation activity. The optimum conditions for GOS synthesis was found to be at pH 6.0 and 85 °C. A maximum production of 197 g/L of GOS tri- and tetrasaccharides was obtained from 40% initial lactose, after 55 h of incubation. The total GOS yield increased with the initial lactose concentration, whereas the highest lactose conversion rate (72%) was achieved from a low lactose solution (5%). Given that a significant proportion of the remaining lactose would be expected to be converted into disaccharide GOS, this should enable the future development of a cost-effective approach for the conversion of whey-based substrates into GOS-enriched food ingredients using this cell-based technology.