至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity

Cell Rep. 2021-01; 
Lvyun Zhu, Li Nie, Sisi Xie, Ming Li, Chushu Zhu, Xinyuan Qiu, Jingyu Kuang, Chuanyang Liu, Chenyu Lu, Wenying Li, Er Meng, Dongyi Zhang, Lingyun Zhu
Products/Services Used Details Operation
Mutant Libraries The sequences of ubiquitin and ubiquitin mutants were codon-optimized, synthesized by GenScript Get A Quote

摘要

Microgravity is a major environmental factor of space flight that triggers dysregulation of the immune system and increases clinical risks for deep-space-exploration crews. However, systematic studies and molecular mechanisms of the adverse effects of microgravity on the immune system in animal models are limited. Here, we establish a ground-based zebrafish disease model of microgravity for the research of space immunology. RNA sequencing analysis demonstrates that the retinoic-acid-inducible gene (RIG)-I-like receptor (RLR) and the Toll-like receptor (TLR) signaling pathways are significantly compromised by simulated microgravity (Sμg). TRIM25, an essential E3 for RLR signaling, is inhibited under Sμg, hampe... More

关键词

K63-linked ubiquitination, RIG-I, TRIM25, antiviral immunity, positive feedback loop, rotary cell culture system, simulated microgravity, type I interferon, zebrafish embryo model